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A MODIFTIED METHOD OF INTEGRAL REILATIONS FOR SUPERSONIC
NONEQUILIBRIUM FLOW OVER A WEDGE

By Perry A. Newman
Langley Research Center

SUMMARY

The standard method of integral relations has been modified so that better
results are obtained for inviscid nonequilibrium supersonic flow over wedges.
The polynomial profiles assumed for certain integrands in the standard method
are not used. Instead, the definite integral itself is replaced by an expres-
sion in which the values of the integrand at the upper and lower limits are
welighted to account for the nonequilibrium effects. These weighting functions
are computed by considering relaxation histories along frozen-flow streamlines.
Conversion of the partial differential flow equations to ordinary equations
using weighting functions is no more laborious than in the standard method.

The resulting approximate system is integrated smoothly from the frozen-
flow shock values to the equilibrium asymptotic wvalues. The entropy layer on
the wedge surface is not predicted by the approximate system but results from
integration of a set of corrected equations. Numerical results are presented
for vibrational relaxation of a pure diatomic gas (nitrogen) and dissociation
relaxation of the Lighthill-Freeman "ideal dissociating gas" (oxygen). These
particular cases have been selected so that a comparison can be made with
existing characteristics calculations. The results are also compared with
those of the standard method of integral relations as well as with those of a
recent perturbation solution.

INTRODUCTION

The method of integral relations is a numerical method for solving systems
of nonlinear partial differential equations by transforming them to approximate
systems of ordinary differential equations. This method and its applications
have been reviewed recently by Belotserkovskiy and Chushkin in reference 1
which gives a very good description of the method as well as an extensive bib-
liography. Two recent applications of the method to nonequilibrium flow have
appeared in the literature. South (refs. 2 and 3) has considered the vibra-
tional relaxation of a pure diatomic gas over wedges and cones, while Shih,
et al. (ref. 4) have considered the chemical relaxation of air (5 species) over
a blunt body. Other methods which have been used to compute nonequilibrium



flow over pointed bodies include the method of characteristics (for example,
refs. 5 to 8) and perturbation methods (ref. 9).

The obvious advantage of the integral methods is that highly efficient
techniques for solving ordinary differential equations have been developed for
high-speed digital computers. Results given in references 2 and 3 as well as
those reported herein were computed in less than 5 minutes per case on an
IRM 7090 electronic data processing system. The major disadvantage is lack of
detail within the shock layer. The other methods mentioned previously also
have their limitations. As is pointed out in reference 6, application of the
method of characteristics to nonequilibrium problems 1s not straightforward;
furthermore, the computation time can be very long, even on high-speed com-
puters. The major difficulty with the perturbation method is in application
to problems of practical interest - that is, one is interested in dissociation
phenomena, for example, only if dissociation is significant; then the perturba-
tion is no longer small. Lee (ref. 9) carefully delineates the conditions
under which his perturbation solution is valid.

In applying the standard method of integral relations (defined in ref. 1
as the simple method) to noneguilibrium flow past wedges and cones, South
(ref. 2) found that the asymptotic value (far from the tip) of the surface
vibrational energy did not converge as the order of the approximation
increased. The surface nonequilibrium rate equation of the approximate system
caused erroneous overshoots or undershoots of about equal magnitude in the
asymptotic value of this energy. Reference 2 indicates that this phenomenon
was due to the existence of three distinct zones in the shock layer far from
the tip: (1) a relaxation zone just behind the shock wave, (2) an equilibrium
zone in the interior, and (3) an entropy layer next to the body surface. The
thicknesses of zones (1) and (3), relative to that of the entire shock layer,
get smaller with distance from the tip but they do not vanish - that is, the
shock boundary condition of frozen flow remains, even though most of the shock
layer 1s in equilibrium. Thus, profiles of flow variables across the shock
layer approach discontinuities and cannot be adequately approximated by low-
order polynomials.

The idea of the present modification is to replace integrals across the
shock layer with an expression in which the values of the integrand at the
shock wave and on the wedge surface are weighted to account for the nonequilib-
rium effects. In general, these functions are determined by considering the
relaxation history along frozen-flow streamlines - that is, the shock geometry
(shock angle and streamline positions), as well as the pressure and velocity,
is taken as if the flow were frozen for the determination of the weighting
functions. These functions depend on the distance along the surface from the
wedge tip. In the standard method, an equal weight is given to each strip
boundary and this weighting is not altered with distance downstream.

In order to test the method, two cases using different gas models have
been computed. In the first, hereafter called gas I, vibrational relaxation in
a pure diatomic gas 1s considered. The second, hereafter called gas II, is the
Lighthill-Freeman "ideal dissociating gas" (refs. 10 and 11).



SYMBOLS

Primed quantities are dimensional; unprimed quantities are nondimensional.
(see eqs. (7), (8), and (9).) Suffix I on an equation number indicates that
the equation applies only to gas I, while the suffix IT applies only to gas II.

a nonequilibrium weighting function (see eq. (18))

Cq vibrational noneguilibrium rate parameter

Co dissociation nonequilibrium rate parameter

cp frozen-flow specific heat at constant pressure

E vibrational energy

Eeq equilibrium vibrational energy

F defined by equation (15)

g =p + pu?

h = pv

H=7p + pve

K dissoclation energy per mole of the diatomic species divided by the
product of T; and the molar gas constant for the diatomlic species

Ky functions defined in appendix B

L' nonequilibrium length scale

M frozen-flow Mach number

P pressure

P

9 defined by equation (15)

Q defined by equation (19)

S dissociation nonequilibrium rate parameter

t = pu

T temperature



velocity components in x- and y-direction, respectively

total velocity

coordinate along and normal to wedge surface, respectively

degree of dissociation, mass fraction of atoms
shock-wave angle

ratio of frozen-flow specific heats
shock-layer thickness in y-direction
vibrational nonequllibrium driving force
wedge half-angle

characteristic vibrational temperature
shock-layer included angle, B - 6

dummy variable for x

density

characteristic density of dissociation

vibrational relaxation time

dissociation nonequilibrium driving force

Subscripts:

0 quantity evaluated at surface (y = 0)

c corrected surface quantity

i index

w quantity used in determination of weighting functions
W initial value (x = 0) of w subscripted quantity

0 free-stream quantity

s} quantity evaluated at shock wave (y = )



( )O quantity evaluated at the tip (x = 0, y = 0), that is, initial value

Bars over symbols indicate average values.
PROBLEM DEFINITION

General Description

The problem to be discussed is the steady supersonic flow of a pure dia-
tomic gas past wedges at zero incidence. The shock wave is attached and the
flow is inviscid and isoenergetic with only one dissipative mechanism. Two
different gas models are considered; in the first (gas I) the dissipative mech-
anism is the vibrational relaxation. The second (gas II) is the Lighthill-
Freeman "ideal dissociating gas" (refs. 10 and 11) where the dissipative mech-
anism is the dissociation relaxation.

The results for gas I can be directly compared with the standard method
results given in reference 2 and the characteristics results given in refer-
ence 5. For gas ITI, the results for both the standard and modified methods are
presented herein. These results are compared with the characteristies results
of reference 7.

Basic Equations

The geometry and coordinate system are pictured in figure 1 and are iden-
tical to those used in reference 2. The basic flow
and rate equations are written as (ref. 3, special-
ized for the wedge)

Continuity:

Straamliine
Shock wave

2ou) + %(w) -0 (1)

Free stream

x-momentum:

2(pu2 + p) + L(ouv) = 0 (2)
ox oy

y-momentum: \
3 3 Figure 1.- Geometry and
Z(puv) + =(pv2 + p) =0 (3) coordinate system for
ax ay nonequilibrium flow.



Rate:
(4.1)

I
o

é%(puE) + é%(va) - pe

(4.11)

1
o

é%(pua) + é%(pva) - pp

where B 1is the nondimensionalized vibrational energy, a is the degree of
dissociation, and € and ¢ are the nonequilibrium driving forces for gases I

and II, respectively.

The energy and state equations for gases I and II are

Energy:
T + E + % M2 (02 + v2) = 1 + % M2 (5.1)
% K L m2(u2 + v2) = Iy
(l+l+>T+l+a+6 (ve + va) l+6M°° (5.11)
State:
%Mmzpr (6.1)
% ngp = (1 + a)pT (6.11)

The free-stream ratios of frozen-flow specific heats 7y, of 7/5 for gas I and

4/3 for gas II have been used in equations (5) and (6). It should be noted
that 7 = 4/3 for gas II (when o = 0) because of the manner in which the
vibrational-energy mode is treated. (See ref. 10.)

Quantities have been nondimensionalized as follows (primes denote dimen-
sional quantities):

\
(u',v') p' 0!
u,v = ——— D = p = —
V! 112 o!
o0 poov°° 0
T! (x',y") (7)
T = — X’y’ Fe e
T L
J
The quantity E 1is nondimensionalized as E = E
cﬁT;



As in references 2 and 5, the length scale L' for gas I is taken to be

L' = vir'(0,0) (8.1)

where 7'(0,0) is the vibrational relaxation time on the surface at the tip.
Also 7' and the driving force € are given as

Cl>l/3

p'T! = exp (—T
T

_ (Beq - E)

> (9.1)

J

The quantity C; is an experimentally determined rate parameter, @Q is the

characteristic vibrational temperature, and Eeq 1s the equilibrium value of
E for the temperature T. As in reference 5, C; was determined from the

data of Blackman (ref. 12).

For gas II, the length scale L' is taken as that given in reference 7 as

1S

PD
L' =V} o 5°‘°C—2 (8.11)
oo 00

where Cp 1is the C of references 7 and 11. (Note, however, that reference 7
does not use this length scale.) As in references 7 and 11, the driving force
$ is then taken to be

b - prT-s[(l - a)e KT 2 o@] (9.1II)

fp

The quantities Cp and 8 are experimentally determined rate parameters while

pﬁ is the characteristic density of dissociation defined by Lighthill



(ref. 10). Note that when the quantity within the brackets of equation (9.II)
vanishes, the equilibrium condition is obtained (ref. 10). As in reference 7,
Co and S were taken from the data of Matthews (ref. 13) for oxygen.

Boundary Conditions
The boundary conditions are those given in reference 2. There it is

assumed that the free-stream nonequilibrium energy variable is zero and that it
remains zero as the flow passes through the shock wave. That is

il
I

E(x,8) = Eg(x) = Ep = O (10.1)

a(x,d) Qoo = O (10.11)

i

ag(x)

1

Thus the frozen-flow shock-wave relations apply and all quantities immediately
behind the shock wave are functions of 7., Me, 6, and B(x). These rela-

tions, taken from reference 1k, are given in appendix A. Since g(x) is the
only x-dependent quantity in a shock function f£(x,8) = fg(x), then

dfy _ dfs g8
dx  dp dx (11)

Further, the shock wave is attached at the tip, so that
8(0) = 0 (12)
The location of the shock wave downstream is obtained from

%; = tan A (13)

where A =B - 0. Finally, the surface is a streamline so that

v(x,0) = vo(x) = 0 (1)



APPROXIMATE INTEGRAL SOLUTION

General Equations

The method of integral relations converts a system of nonlinear partial
differential equations, such as equations (1) to (4), to an approximate set of
nonlinear ordinary differential equations which can be integrated numerically.
Equations (1) to (4) are in the divergence or conservation form. That is

R (x,¥) . oP; (x,¥)
ox Sy

- Fi(X:Y) =0 (i = 1;2:5)2*) (15)

Equations (15) are integrated across the shock layer, y = 0 to 8&(x), to
obtain

3(x)

8(x)
d—d]'(' j; Q'i(x,y)dy - Q:L(X)S)%}Q + [Pi(xys) - Pj_(X,O)] - J; Fi(x)Y)dy =0

(16)
where Leibnitz's rule for differentiation under the integral sign has been

used. In the standard method, polynomial profiles in y are assumed for the
quantities Q;j(x,y) and Fi(x,y). For the one-strip approximation with a

linear profile (ref. 3), equations (16) become

d d dd
5(& Q,0 * 3% Qi,S) + <Qi,0 - Qi,f;)a - 2<Pi,o - Pi,6> - 6<Fi,o + Fi,S) =0
(17)
where Qi,O = Qi(x,0), etc. Equations analogous to (17) are given for the two-
and three-strip approximations in reference 2.
In the modified method presented herein, the integrals in equations (16)

are replaced by

8(x)
Q; (x,y)dy = 8(x) {[l - ai(x)] Qi,o + ai(X)Qi,a (18)



where aj 1is the nonequilibrium weighting function for Q;. With @;(x)
defined as

8(x)
3 - 1
Q;{x) = (%) L Q1 (x,¥y)dy (19)
aj 1s obtained as
Q(X) - Q.0
aj(x) = 2 20
1) < g (20)

In the next section, 1t is shown how the values of a4 are computed by
using equations (19) and (20). With the integrals in equations (16) replaced
by equations (18), equations (1) to (4) are transformed to the following
approximate ordinary differential equations:

6(1 )dto rsar I altn - ta) 2L 4 (1 ) t - b >t A+hg =0
- aj)]—= — - - — - a - + =
1) 3 1% ( 0 E5>dx ( 1 ( 0 - p)tan °
(21)
deg deg, da,
5(1 - 32)5‘ + Bap = S(go - gs)dx— + (l - ag)(go - g5>tan A+ 25 =0
(22)
dZS da5
88.3 -a;— + 626 a;(—- - (l - 8.3>ZS tan A + HS - po =0 (23)

8(1 - aOf_%._EL) - dtpEg g% + (l - au)tOEO tan A - 6(1 - a5)poeo - '68.5p8€5 =0

(2k.1)

a(toag da),
o1 - )= - B0 it ¢ (1 - a)toso tan 2 - o1 - es)eofo - saspely = 0

(2k.11)

10



where

\
t = pu
h = pv
g = pu2+p> (25)
H = pv2 +p
z = puv
P J

and as, the weighting function for the driving force, is given by equa-

tions (18) to (20) where ¥y replaces Qj. Equations (11) and (23) immedi-
ately give the differential equation for B. Equations (21), (23), and (24)
give the differential equation for Egy or ag. In order to separate the dif-

ferential equations for Po and ugy, the energy and state equations ((5) and
(6)) must be differentiated and used with equations (21) to (24). The four
separated equations used in the numerical integration are given in appendix B.

Determination of the Weighting Functions

The nonequilibrium weighting functions a; are determined by integrating

the streamline rate equation along the frozen-flow (or even equilibrium-flow)
streamlines. The frozen-flow solution is the oblique shock solution (appen-
dix A) where

£

o o= g -
B = By
Ey =Eg =0
ag = ag = 0
J

The shock wave is straight and the streamlines are parallel to the wedge sur-
face. The surface streamline rate equation (valid for all values of x) is

11



obtained by substitution of equation (1) into equation (4) and application of
the surface boundary condition (eq. (14)) and is

(27.1)

|8
5l

or

(27.11)

i
51>

Assumptions.- In reference 5 it is shown that for vibrational relaxation,
integration of the surface streamline rate equation with the velocity held con-
stant gave energy and temperature results which compared favorably with the
characteristics results. Thus in determining the welighting functions, it is

first assumed (for both gas models) that the velocity

is constant (u = uy; v = 0); this means that the pres-

sure is also constant (p = pw). And second, the depar-

ture of the streamlines and shock wave from straight
Frosen-tio lines due to nonequilibrium effects is neglected. Thus
shock wove (see fig. 2)

\ Streamline
.

wedao 8(x) = x tan Ny (28)

In the determination of Q(x), it is assumed that
a quantity Q(x,y) depends only on the distance along
the streamline from the shock wave to the point (x,y),
that is (see fig. 2)

a(x,y) = Q(x - £,0) = Qolx - &) (29)

Figure 2.~ Geometry and

coordinate system since in frozen flow, the surface streamline is like

for determination of all other streamlines. Also it can be seen from fig-
weighting functions. ure 2 that
y = 8() = ¢ tan My (30)

The integral over y in equation (19) can be made into an integral over
¢ by using equations (28) to (30). Then

ACES N Rl (51)

12



Now define x" as x" = x - £ and equations (31) become

X
Qi(x) = % \/; Qi,o(x")dX" (32)

Equations.- With the approximations of the previous section, the values of
ay defined in equations (18) are computed from equations (20) as

o(x) - o (x)

a3(x) = ap(x) = az(x) = P—cy (33)
and
— N\
oy (x) = PER) - py(x)Ey(x)
-pw(x)Ew(X)
(34.1)
(x) = E%Kx) - py(x)ey(x)
35 X) = pw€w - pw(x)ew(x)
or
an(x) = palx) - pylx)oy(x)
. g (%) ang(x)
-4 > (34.11)
az(x) = p?ﬂx) - pw(x)¢w(x)
’ i pW¢W - pw(x)¢w(x)

-

The quantities with the subscript w indicate that the quantities are computed
along frozen-flow (or equilibrium-flow) streamlines and are functions of either
Ey or ay, which are defined from equations (27) as

dBy(x) _ eylx)
ax  uy

(35.1)

15



with

M2 A
Ty(x) = 1 + —%—(i - uw%> - B, (x)
2, ) (36.1)
o) = LY Pw
Py(x) = 3 ) )

where Ty, Eeq,w, and &, are given by equations (9.1) with T =T, for

gas I and
dong(x) _ Pu(x)
S Ty (35.11)
with
N
(- wf) - Kl
Tw(x) =
b+ ay(x)
UM 2
p(x) = e - , e
5@- + a'w(x)___ITw(X)
K
Bulx) = prW(X)Tw'S(X) - ay(x)]e Tu(x) pX;X) = (%)
J

for gas II. The quantities with the subscript W are the initial values
(x = 0) of the w subscripted quantities. The barred quantities in equa-
tions (33) and (34) are computed from equations (32) where Qi,o(x") = Qi,w(x")'

da;
It was found that a;l was computed accurately enough as
da;  a;(x + Ax>df ?if?)

dxl = = (37)

1k



Tip Regilon

It can be seen from the computational equations given in appendix B that
the derivatives appear to be unbounded at the tip (x = O) because the shock
wave is attached, that is, &(0) = 0. Since these derivatives are linearly
dependent on K; and the coefficients of K; do not vanish as x — 0, the
necessary condition that a regular solution exists at the tip is Ki(0) = 0.
When the equations for Kj are set equal to zero, it can be seen that the
frozen-flow oblique shock solution is obtained independent of the values of the
nonequilibrium weighting functions aj(0) - that is, f£u(0) = £§(0). Thus the
equations of appendix A and the energy and state equations ((5) and (6)) give
the tip (or initial) solution.

In order to get the initial derivatives, the quantities lim<§l> must be
x—=0
evaluated. The initial values of a4 will be required. It is shown in appen-
dix C that the initial value of all aj is 1/2. The initial derivatives are

obtained in appendix D. It can be seen that for gas I, these are the same as
those obtained by South in reference 3 (see egs. (35) to (39) of ref. 3) where
it is pointed out that these derivatives are the exact wedge-tip gradients
derived by Sedney (ref. 15).

Asymptotic Behavior

Far from the tip, most of the shock layer will be in equilibrium so that
the weighting functions, defined by equations (18) to (20), will be changing
very little with x. Thus

lim <§xii-> =0 (38)

X

Furthermore, since Qi g # Qi,0 and Qy — Qi,0, equation (20) gives

lim (ai) =0 (39)

X— o

With equations (38) and (39) substituted into the equations of appendix B it
can be seen that the derivatives of pg, uy, and Ey (or ag) go to zero

since 8 - as X - oo, It is not immediately obvious that dB/dx tends to
zero because of the presence of the factor 6a5 in the denominator of equa-

tion (B9). However, it can be shown (by using a mean value theorem for defi-
nite integrals) that

15



da
{1 @)
1im ;——i =0 1

X—yc0
(40)
lim (8a3) = Constant
X
Thus dp/dx will vanish as x - ® if the condition
1lim (K3> -0 (41)

X—>o

is satisfied.

If the derivatives of the flow variables ty and gy had been taken with

respect to 1n x instead of x, the physical situation would still require
these derivatives to vanish as x — », since an equilibrium condition will be
reached. Then X; and Kp should also have to approach zero as x -

before the system would stop driving. The simultaneous numerical solution of
this asymptotic condition

lin (K;) = lim (k2) = 1im (x5) = o (42)

X —> 00 X— o X ©

together with the equilibrium condition and the state and energy equations
gives the same surface properties and shock angle as those obtained from the
equilibrium-flow solution behind an equilibrium shock wave. It is expected
then that the modified integral method will give the frozen-flow solution in
the tip region and the equilibrium solution for the surface properties and
shock angle far downstream.

As was indicated in the "Introduction," the standard method as applied by
South (ref. 2) gave rise to unrealistic asymptotic values for the vibrational
energy. The asymptotic form of the surface rate equation for the one-strip
approximation from reference 2 can be written as

dE Po€
1im <__Q _ %0, 8% (43.1)
X0 Yo pouO

The shock~wave driving force eg 1s always positive. Thus the surface driving

force €9 must assume unrealistic negative values before 1lim (——§> =0 as 1t
X—>

should when an equilibrium condition is reached. The corresponding equation

from the modified method is the asymptotic form of equation (B10.I)

16



ol _ <o
lim |—) = — (4h.T)

Note that this 1s the exact surface rate equation as given by equation (27.1).
For equilibrium, ¢g is identically zero.

Corrected Equations

It was shown previously that the exact surface rate equations are given by
equation (27). Likewlise from equations (1), (2), and (14) the exact surface
momentum equation (for all x) is

dug .3 dpg
= T (45)

With the shock angle and pressure distribution obtained from the equations
of appendix B, the exact equations (27) and (45) were integrated (as auxiliary
equations to the approximate set of appendix B) in order to obtain the cor-
rected surface properties, defined as

&
e . o1 %o (46)
ax te dx
and for gas I,
e _ Ec I
= C o (W7.1)
with
5 N
Te = 1+M%-<1 -u02> -Ec$
(48.1)
¢T 5 m )

where T, Eeq,c; and €. are glven by equations (9.I) with T = T.. For

gas II the corresponding equations are

17



dae _ fe
with
3

b+ %M“?(l - u?) - Kag

Te = i
b + ap
LM,

b, = __ZP—O ? (48.11)

3(1 + ae)Te

K
Te Pe 2

B = prcTc-S (l - Gc)e oy

As South points out in reference 2, it is tempting to replace equa-
tions (B10) and (Bll) with equations (27) and (45), respectively. However, it
was found that such a hybrid system either did not integrate stably or had
worse asymptotes than the approximate system. Belotserkovskiy and Chushkin
(ref. 1) indicate that extraneous equations may appear during the construction
of the approximate set and state that these extraneous equations must be more
accurately satisfied with increasing approximations (more strips). In this
sense then, the corrected equations (46) and (47) are integrated (in addition
to the approximate set) in order to get better surface values and to check the
approximate set. It will be seen that the entropy-layer effects are obtained
from these equations.

Numerical Integration

The approximate system of ordinary differential equations of appendix B,
the corrected equations (46) and (47), and frozen streamline rate equa-
tions (35) were integrated on an IBM 7090 data processing system using a first-
order Euler scheme. The first integration step (using initial derivatives of
appendix D) was large (relative to successive steps) in order to get away from
the tip indeterminacy. Results for both cases were computed in less than
5 minutes.

When gas II, the Lighthill-Freeman model (refs. 10 and 11), was used, it
was found that a hyperbolic stability criterion (for supersonic flow) had to be
applied for a stable integration. South (ref. 2) also found that this crite-
rion had to be applied when higher approximations were made in the standard
integral method for gas I.

For the one-strip approximation used herein, data are known at the shock
wave and on the wedge surface at a given value of x. The intersection of the

18



right-running characteristic from the shock point
and the left-running characteristic from the surface
point determines the maximum step size which can be
used for a stable integration. (See fig. 3.) For
parallel streamlines and constant local Mach number,
the geometry (fig. 3) glves

Shack wave

Streamiine

Wedge

‘Approximate surface

characteristics

Ax < g(Mo2 - 1)1/2 (49)

2
axs B (u?-1)
Figure 5 of reference 2 shows the effect of this
stability criterion for a two-strip (standard inte-
gral method) integration. This same behavior was

found in the one-strip modified method reported
herein Flgure 3.- Approximate
. hyperbolic stability
criterion.

RESULTS AND DISCUSSION

In order to assess the accuracy of the modified integral method the two
cases for which characteristics results are available (refs. 5 and 7) have been
selected. Case I is for vibrational relaxation in pure nitrogen (gas I) and
case IT is for the Lighthill-Freeman (refs. 10 and 11) ideal dissociating gas
model using constants for oxygen (gas II). Case I has been calculated by using
the standard integral method in references 2 and 3. A recent perturbation
solution has also been compared (ref. 9).

The parameters for case I are:

8 = 40.02°
Meo = 6

7! = 300° K

@l

— = 11.12

Ts

Cy _ N
o 0.4655 x 10

00
Those for case II are:

8 = 25.175°

19



Mo = 32
T! = 281.24° K
p! = 1.33389 x 1072 atm

K = 211.136

S
>
Co = 3.5489 x 1023 SSEQ_EE_

g sec

Case II is the same as case I of reference T and corresponds to oxygen at about
150,000 feet altitude.

Vibrational Relaxation

Figure U4 shows the variation of the shock-wave angle and certain surface
quantities as functions of the nondimensional surface distance x for case I.
The results of the modified integral method (solid curves) are seen to vary
smoothly from the frozen-flow values behind a frozen shock wave to the
equilibrium-flow values behind an equilibrium shock wave (tick mark labeled
eq). However, the proper nonequilibrium asymptotes (the entropy layer) for the
surface vibrational energy and surface temperature are obtained from the cor-
rected equations (46) and (47). These results are given as solid lines with
C's through them in figures 4(c) and (d). Note that to the scale used these
are also the corrected results for the standard integral method. It can be
seen that the agreement with the characteristics computation (circles) of ref-
erence 5 is excellent. The perturbation results of reference 9 (hatched line)
are not as accurate as either the modified or the three-strip standard integral
results. The erronecus overshoots or undershoots in the asymptotic value of
the surface vibrational energy (which are obtained in all approximations of the
standard method) do not appear in the modified results.

The variation of the nonequilibrium weighting functions with x 1s shown
in figure 5. It can be seen that these functions monotonically decrease from
the tip value of 1/2 toward zero as x increases.

Sedney (ref. 15) points out that, far from the tip, equilibrium flow is
inconsistent with the frozen shock-wave boundary condition and also notes the
analogy to viscous boundary-layer theory, where inviscid flow is inconsistent
with the no-slip surface velocity condition. It can be seen that neither char-
acteristics nor the standard integral method results for the shock-wave angle
and surface pressure (figs. 4(a) and (b)) exactly approach the equilibrium
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Figure 4. - Nonequilibrium vibrational flow over a wedge.
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value. In the formulation of the

standard integral method this frozen sL
boundary condition is assigned a def- o) a7 g (o the scale of this figure)
inite weight (with respect to the AE N ———

entire shock layer) which is not
altered far downstream. The method of
characteristics would properly weight Al
the frozen boundary condition if the

tip region mesh size could be main- !
tained. This procedure is not practi- L
cal, however, if results far down-
stream are desired. Thus, in both of

thesg? I.nethOds’ the frozen b01.mdary Figure 5.- Variation of the weighting func-
condition is not properly weighted far tions for nonequilibrium vibrational
downstream. The present modified flow over a wedge. Case I.

integral method weights the boundary

condition so that its effect far down-

stream does not disturb the major portion of the shock layer which is in equi-
librium. In this method the tip-region relaxation zone is taken to be repre-
sentative of the relaxation zone behind the shock at all values of x and a
small step size is used in the tip region.

Dissociation Relaxation

Figure 6 shows the variation of the shock-wave angle and certain surface
quantities as functions of the nondimensional surface distance x for case II.
Again it is seen that the modified integral results (solid curves) vary
smoothly from the frozen-flow values behind a frozen shock wave to the
equilibrium-flow values behind an equilibrium shock wave (tick mark labeled
eq). In figure 6(d), however, only the corrected temperature is plotted. The
circles in figure 6 are the characteristics results of reference 7. The curves
with long and short dashes in figure 6 give the results of the one-strip stand-
ard method.

In determining the weighting functions, frozen conditions behind a frozen-
flow shock wave were used since this is the condition in the tip region. How-
ever, beyond about one length scale downstream, the shock-wave angle is very
close to that for equilibrium flow. 1In order to see whether or not the frozen
and equilibrium geometries give different results, the latter was also used for
determining the weighting functions in case II. These results are given in
figure 6 as dashed curves. The differences between the frozen- and equilibrium-
geometry results are practically negligible. The weighting functions them-
selves as determined for both situations are plotted as a function of x in
figure 7. Again it is seen that they decrease monotonically (with increasing
x) toward zero.
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Figure 6.- Nonequilibrium flow of Lighthill-Freeman

"ideal dissociating gas" over a wedge. Case II.
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As was stated previously,
reference 5 shows that the
constant-velocity assumption
(used herein only in deter-
mining the weighting functions)
gave results which compared
favorably with the characteris-

Frozen geometry
—-—— Equilibrium gaomatry

tics results for vibrational a
relaxation. Figure 8 shows the

effect of this same assumption 3
on the degree of dissociation &
and temperature for case IT 2

(dissociation relaxation). The
curve labeled W is for the JE
constant-velocity assumption
while the curve labeled C ols 1t L
gives the corrected value of

the degree of dissociation.

The values of TW and TC Figure 7.- Variation of the weighting func‘bic:ns for
nonequilibrium flow of Lighthill-Freeman "ideal

dissoclating gas" over a wedge. Case II.

appear to be the same; they
differed by less than 1 percent
over the entire integration.
Thus, the constant-velocity
assumption appears to give fairly good results for the variation of temperature
and degree of dissociation along the wedge surface.

From figures 4 and 6 it can be seen that the asymptotic agreement between
the modified and characteristics methods is not as good in case II as in case I.
It is believed that the integral results are more nearly correct far downstream.
An entropy layer exists on the surface and the manner in which an upper bound
for the nonequilibrium asymptotes such as
surface temperature and energy should be com-

puted is not known. TFor the cases considered “T Te ond Ty o the scale of this figure) 1°
it appears that the equilibrium condition —w—ay (constant velacity volue) —w—|
behind the frozen-flow shock wave gives upper i )ﬁjﬁ:r °
bounds (this corresponds then to an equilib- &

rium shock layer for a larger wedge). The or

tick marks labeled fr in figures 4(c) and

(d) and 6(c) and (d) give the surface vibra- sor

tional energy (or degree of dissociation) T

and the temperature for equilibrium condi- 2or

tions behind the frozen-~flow shock wave.

The lower limits for these two quantities 1or-

are the equilibrium values behind an

equilibrium-flow shock wave and are given Cs

as the tick marks labeled eq in fig-
ures 4(c) and (d) and 6(c) and (4).
Figure 8.- Comparison of surface

. temperature and degree of dis-
It is seen from figures )'"(c) and (d) soclation used in determining

that asymptotic results computed for gas I weighting functions with the
by the characteristics method (ref. 5) and corrected quantities.
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both integral methods (when corrected) are bounded by the fr and eq tick
marks. However, for gas II it appears from figure 6(d) that the temperature
asymptote for the characteristics computation (ref. 7) will not fall between
these marks as does the corrected temperature obtained from the integral
methods. Since the asymptotic values of all flow variables are interdependent,
other asymptotic values given in reference 7 may also be questioned. In refer-
ence 5, it is pointed out that when the method of characteristics is used to
compute nonequilibrium flows, care must be exercised in the choice of both the
finite difference scheme and the dependent variables. In fact, it was found
that the standard difference technique was not successful in such a computa-
tion. Sedney and Gerber (ref. 6) point out that Capiaux and Washington in ref-
erence 16 (essentially a preprint of ref. 7) seem to be using the standard
difference technigue, but not in Cartesian coordinates. Nothing in reference 7
indicates that the finite difference scheme used in reference 16 has been modi-
fled, even though improved results are obtained in reference 7.

The dissociation relaxation case computed by Lee (ref. 9) using the per-
turbation method appears to be very unrealistic. In order to get a small per-
turbation, the parameter pj /pw was set to about 103. Lighthill (ref. 10)

points out that for atmospheric values of density, pD/poo is at least 107.

CONCLUSIONS

The standard method of integral relations has been modified to obtain a
better asymptotic behavior.

Specific conclusions which can be drawn are:

1. The modified integral method results vary smoothly from frozen condi-
tions behind a frozen-flow shock wave to equilibrium surface conditions behind
an equilibrium-flow shock wave.

2. The nonequilibrium surface entropy layer effects are obtained by
defining corrected variables from the exact surface momentum and rate
equations.

3. For flow over a wedge, it appears that an upper-bound for certain non-
equilibrium surface entropy layer effects is obtained from the equilibrium con-
dition behind a frozen-flow shock wave.

L, A stable integration of the approximate set of ordinary differential
equations (obtained from hyperbolic partial differential equations) results
only if the integration step size is limited by a stability criterion which is
related to the characteristic curves.
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5. Computation of the weighting functions for a wedge is easy; for more
complex bodies this computation will be more difficult since certain simpli-
fying assumptions cannot be made.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., November 5, 1964.
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APPENDIX A

FROZEN-FLOW SHOCK-WAVE RELATTCNS

The required frozen-flow shock-wave relations are taken from reference 1l.

Define

=
I

then

It

us

vy

The B derivatives of equations (A2) to (A5) are also needed in order to
obtain the B derivatives of the quantities defined in equations (25).

Z;_:jiiiziéM”QSingﬁ - 1)

(1 - A)cos & + A cot B sin @

-(1 - A)sin 6 + A cot B cos 6

(y + l)M@esingﬁ
(7 - 1)Mo2sin®g + 2

p5=A+ >
My

du 3
S - . 4 cos B sin A - Asin®
d.B Y + 1 Singﬂ
av
_§ = 4 cos B cos A - ALSG
das 7y + 1 sinzﬁ
dpg hpazcot B
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(A1)

(A3)

(Ak)
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(48)
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dp
P % gin B cos B (A9)
ap 7 + 1
then, for example
dt du. dp
5 = pa 8 + Ug —E (A.lO)
dp dp dp
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APPENDIX B
COMPUTATIONAL EQUATIONS

Equations (21) to (24), respectively, are written (by using equation (11))
as:

6(1 - al)(—;% + Bay 3o %& = XK (B1)
5(1 -a2>jxio+5a2§§—6§x—5=1<2 (B2)
ta3 Zﬁi -5 (B3)
1 - au I}O —2 + Eo =2 ol . KiT (BL.T)
a<1 - a4>[to ;Xﬂ + ag g—o = K17 (B4.TT)
where
K) = - (1 - al><to - ts)tan N + hy - s(to - t5>z} (B5)
Kp = - <1 - ag)(go - g8>tan A+ ozg - 8( - g5>da} (B6)
K5 = - -(l-a5)2.5 tan7\+H5-pO+6z6dx—3 (B7)
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APPENDIX B

day,

KMI = - (l - ah)tOEO tan N - & (l - aé)poeo + asPgey + tOEO a;—
(B8.1)

da),

Ky = - (1 - ah)toao tan A -8 (l - a5) pofo *+ aseefs * todo T
(B8.II)

Equation (B3) gives dp/dx as
K

-2 (B9)

8

Equations (Bl), (B4), and (B9) give the rate equation for gases I and II,
respectively, as

Ef§
io - - Kur - Bo Kl—_—aﬁ Ky - T K3 (B10.1)
Sto(l - au) ( _ al) . %Eé
3
( .
day, (l a ) aj EEQ
S — B S | O _
dx Sto(l - a)_'_> Kurr - % (1 ; al> Ky ) as K3 (B10.1I)
dp
L /

In order to separate the differential equations for Pg and ug, the

energy and state equations ((5) and (6)) must be differentiated and used with
(Bl) to (B4). For gas I, these separated equations are
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T .2 &
dug 1 5 Mo Ky - °2 3p ks + UoKyy
ax Sto(M02 ] 1) (1 - ag) as §§§ (1 - ah>To
atg
Y% (1,2 Eoll,. . Lag
(1_a1)< Mo +l+TO> Kl 3%;_81{3
dpg -1 (l i gle%) %2 ggé Uokur
a&x (2 1-a ‘e - dzg = I e— T
B(MO - l) ( 2) az EE— ( 4) Y
_ ats
uo 2.2, Eo 1ag
) (2 - al)<% tsto 5é> Lo as g§§ E

where M,, the frozen-flow Mach number on the surface, is given by

vo - 1, 2
B

For gas II, the corresponding equations are

dg
duo = 1 Alto Ko - —Lae (_1—§ K3 + %K&
dx S‘to(Al'to - AB) (l - 32) a3 E-i§ (l - au,)
dpg
at
| Agag + to(ay + )ug g - 5 %
(- =) a3 §§§
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dgg |
Py _ -1 As | .2 B K| + AoKyry
= o(ato - A3) (L o) T Az O (1 e
> |
sy )
_[*2“0 + (AB + to)uo} Ky - 21 ‘;T K3 > (Bl2.11)
Z
(- 21) 3 dB—S
Mg = M, ——— w0 (B13.1I)
\[(l + a,o)<l + cx—10>TO
where
Ay = ugzo 7

Ap = uOtOE{(l * %) ~ 3T0>j‘ ) (B1L.IT)
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APPENDIX C
INITTAT, WEIGHTING FUNCTIONS

In order to obtain the initial values of a;, the behavior of Qi for
small x must be determined. The Maclaurin expansion for Qi,w(= Qiﬂﬂ is

dQ;
Qi’w(x) = QW+ < dx,w>ox + Order(xg) (c1)

Then for a small step Ax away from the origin, first-order integration of
equation (32) gives

Qi (&x) =~ Qi,W + <kdx’ > > (c2)
0
But
4Q ,w) Qi uldx) - @y (c3)
dx - x 3
0
thus
Q; (&x) ~ %Eli,w + Qi,w(Axﬂ (ck)
It can be seen from equations (C4) and (33) or (34) that
ai (%) ~ 2 (c5)
irrespective of whether Qi,W = 0 or not. Thus
a;(0) = & (c6)

2

Had only the first term of equation (Cl) been used, a;(0) would have
been found to be indeterminate; thus the second term is needed.
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APPENDIX D

INITIAL DERIVATIVES

The lim <§é> obtained from equations (B5) to (B8), the boundary condi-
x-0

tions, and frozen initial solution (appendixes A and C) is

Kl> ) dto> dtg dB) dhg dB>
(?O“ ELEO-E&—EQ-FCOtAEE—a}O (p1)
- 7
/1 dgé) - E§§<%§> + cot A EE§(99> (D2)
0 &/ 4B \dx/,
(‘&) - A?fé(iﬁ) +cotxi‘5<i‘£> - <@> (D3)
5 /0 2 dp \ax/, L?B ax/ ax /g

“olA
28
(@]
It

|

d

roY

w

T 1 (9]

— = - — 'ta — - p € (D)"'-I)
( /o 2 O\ax o ®°

KuII> 1, [

—21) = LD el 2} - Dk.IT

( 5 /o 5 s} & /g 05¢5 ( )
Equations (Bl) to (B4) become after multiplying by 1/8, taking 1lim , and

x>0

applying the initial sclution

1t dtg dtg ag B Ky

(), - =) - (2), )
1|(%0) , d&s(ap | = <_K£> (D6)
2{—dx o a8 \ax/, 5/,
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1 %sfap\ _ K.é (D7)
23 \ix)o ~ \3/o
1, (o) _ (i
.-
_l_t5<3> - <K__1+II> (08.11)
2 ®\ax /o 5 /o
. . . : dEq dag
With equation (D4) substituted into equation (D8), o= and o= are
given as 0 0
dEo) _ %8
<ax—> "% (29-1)
0
<E_°’2> _ % (D9.1I1)
ax /o U3

As was the case in appendix B, the energy and state equations ((5) and
(6)) must be used with equations (D1) to (D9) in order to separate the other
differentials. These initial derivatives for gas 1 are then

-tae€
<%>o = 55 _—— (D10.I)
a a
Ts [(MSQ 1)% + tg cot A lﬁ}
(i@) - %(Q&) (D11.1)
ax /o dg \a&x/,

SRS

—9) - _ L0 (p12.T)

(dx o ta\& /g
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These equations are identical to those obtained by South in reference 3. For
gas II, the corresponding initial derivatives are

(g_x&)o - ,,ﬁ*,,ﬁfts(K - BTS)% (D10.1T)

d-PO _ dps d

<___>0 = __(_E>O (p11.1T)
dug _ 1 dpo
<_>O = - _’%(—)o (p12.11)
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